organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Yin He and Long-Guan Zhu*

Zhejiang University, Department of Chemistry, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.051 wR factor = 0.096 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis(4-cyanobenzoato)copper(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

In the title polymeric complex, $[Cu(C_8H_4NO_2)_2(C_{10}H_8N_2)]_n$, the Cu^{II} center is located on an inversion center and surrounded by two N-donor molecules and two 4-cyanobenzoato ligands, which impose a square-planar environment on the metal. The spacer linker, 4,4'-bipyridine, is located on an inversion center and links adjacent metal atoms into a onedimensional chain with a Cu···Cu separation of 11.218 (2) Å.

Comment

In recent years, much attention has been paid to the field of coordination polymers and has focused especially on the ligands of 4,4'-bipyridine, terephthalate and their derivatives, due to their potential applications in gas adsorption, ion exchange and heterogeneous catalysis (Eddaoudi *et al.*, 2002; Moulton & Zaworotko, 2001; Seo *et al.*, 2000). Complexes with 4-cyanobenzoic acid are sparse and a recent example suggests that this kind of complex has strong blue fluorescent emission (Yuan *et al.*, 2001). Moreover, a complex involving both 4-cyanobenzoic acid and 4,4'-bipyridine has not been reported so far. Here, we present the crystal structure of the Cu^{II} one-dimensional complex, the title compound, (I).

Compound (I) consists of a one-dimensional Cu^{II} complex in which the geometry around the Cu^{II} ion, located on an inversion center, is best described as square planar, as can be seen in Fig. 1. The coordination of the Cu atom is provided by two O atoms from two 4-cyanobenzoato ligands and two N atoms from two 4,4'-bipyridine ligands. Two benzoate groups and two pyridine rings of the 4,4'-bipyridine ligands are respectively located on opposite sides to minimize repulsion between the ligands. The Cu–O1 bond length [1.9176 (18) Å] is shorter than those of compounds such as [Cu(py)₂-(H₂O)(C₆H₅COO)₂] (Yang *et al.*, 2001) and [Cu(C₆H₅COO)₂-(2,2'-bipy)] (Yang *et al.*, 1994). The 4-cyanobenzoate is coordinated, in monodentate fashion, to the copper center and the distance of Cu···O2 [2.861 (3) Å] is longer and is considered

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

0174

He and Zhu • $[Cu(C_8H_4NO_2)_2(C_{10}H_8N_2)]$

Received 23 December 2002 Accepted 9 January 2003 Online 17 January 2003

ORTEP diagram of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

as non-bonding. This coordination mode of the 4-cyanobenzoato ligand results in the four-coordinate copper geometry. The Cu–N1 bond length [2.051 (2) Å] is similar to those of $[Cu(py)_2(H_2O)(C_6H_5COO)_2]$ (Yang et al., 2001) and $[Cu(C_6H_5COO)_2(2,2'-bipy)]$ (Yang et al., 1994) and those of Cu^{II} complexes with a 4,4'-bipyridine bridging linker (Xu *et al.*, 2002; Zhu & Kitagawa, 2002). The spacer ligand, 4,4'-bipyridine, located on an inversion center, links adjacent Cu atoms and extends the complex into a one-dimensional chain along $[1\overline{10}]$ (Fig. 2). The Cu $\cdot \cdot \cdot$ Cu separation of the network is 11.218 (2) Å, which is the normal distance found in related copper-4,4'-bipyridine complexes. As expected, all other bond distances and angles are within normal ranges, and in good agreement with those of other 4,4'-bipyridine and carboxylcontaining complexes.

Experimental

The title complex, (I), was synthesized by a three-layered solution approach in a tube of ca 0.8 cm diameter with a length of 20 cm. The top layer was 10 ml of a methanol solution of 4,4'-bipyridine $(0.2 \text{ mol } l^{-1})$ and 4-cyanobenzoic acid $(0.05 \text{ mol } l^{-1})$. The middle layer was 3 ml of mixed solvents of methanol and water with volume ratio 1:1. The bottom layer was 5 ml of an aqueous solution of $Cu(NO_3)_2 \cdot 3H_2O$ (0.5 mol 1⁻¹). After 3 d, crystals of (I) were obtained and filtered off.

Crystal data

$[Cu(C_8H_4NO_2)_2(C_{10}H_8N_2)]$	Z = 1	
$M_r = 511.97$	$D_x = 1.507 \text{ Mg m}^{-3}$	
Triclinic, P1	Mo $K\alpha$ radiation	
a = 5.3279 (10) Å	Cell parameters from 978	
b = 8.9739 (17)Å	reflections	
c = 12.195(2) Å	$\theta = 5.3 - 48.0^{\circ}$	
$\alpha = 99.734 \ (3)^{\circ}$	$\mu = 1.01 \text{ mm}^{-1}$	
$\beta = 92.495 \ (4)^{\circ}$	T = 293 (2) K	
$\gamma = 100.190 \ (4)^{\circ}$	Plate, blue	
$V = 563.99 (18) \text{ Å}^3$	$0.31 \times 0.11 \times 0.04 \text{ mm}$	

Figure 2

View of the packing in the title complex (I).

Data collection

Bruker SMART CCD area-detector	2504 independent reflections
diffractometer	2053 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.035$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 6$
$T_{\min} = 0.820, \ T_{\max} = 0.965$	$k = -11 \rightarrow 8$
3490 measured reflections	$l = -15 \rightarrow 15$
Rafinamont	

efinemen

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$
$wR(F^2) = 0.096$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} = 0.042$
2504 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu-O1	1.9176 (18)	C1-C2	1.365 (4)
Cu-N1	2.051 (2)	C2-C3	1.380 (4)
O1-C6	1.277 (4)	C3-C4	1.393 (3)
O2-C6	1.214 (4)	C3–C3 ⁱ	1.478 (5)
N1-C5	1.341 (3)	C4-C5	1.369 (4)
N1-C1	1.347 (3)		~ /
O1-Cu-N1	90.17 (8)	O2-C6-O1	124.6 (3)
C6-O1-Cu	114.5 (2)		
Symmetry code: (i) 2	-x, $1 - y$, $1 - z$.		

The completeness of the data collection was relatively low (90.1%), although all parameters were set according to the suggestions of SMART (Bruker, 1997). The H atoms were refined isotropically, with C-H bond lengths 0.89(4)-0.92(2) Å. The atomic displacement parameters of N2, C8 and C9 are abnormal. Their displacement ellipsoids are very elongated, suggesting some unresolved disorder.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China (No. 50073019).

References

Bruker. (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Eddaoudi, M., Kim. J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). *Science*, **295**, 469–472.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Seo, J. S., Whang, D., Lee, H. Y., Jun, S. I., Oh, J. H., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Xu, X. Y., Zheng, W. X., Zhang, M. X., Liu, Q. L., Grguric, S. R., Dinovic, V. M., Kaluderovic, G. N. & Sabo, T. J. (2002). J. Coord. Chem. 55, 711–716.
- Yang, R. N., Li, C. Y., Jin, D. M. & Chen, L. R. (2001). *Chin. J. Struct. Chem.* **20**, 4–7.
- Yang, R. N., Wang, D. W. & Jin, D. M. (1994). *Chin. J. Struct. Chem.* **13**, 45–47. Yuan, R. X., Xiong, R. G., Chen, Z. F., You, X. Z., Peng, S. M. & Lee, G.
- Huan, R. A., Along, R. G., Chen, Z. F., You, A. Z., Peng, S. M. & H.(2001). Inorg. Chem. Commun. 4, 430–433.
- Zhu, L. G. & Kitagawa, S. (2002). Inorg. Chem. Commun. 5, 358-360.